

AQA Computer Science A-Level
4.1.1 Programming

Concise Notes

www.pmt.education

Specification:

4.1.1.1 Data types:

Understand the concept of a data type.
Understand and use the following appropriately:

● integer
● real/float
● Boolean
● character
● string
● date/time
● pointer/reference
● records (or equivalent)
● arrays (or equivalent)

Define and use user-defined data types based on language-defined
(built-in) data types.

4.1.1.2 Programming concepts:

Use, understand and know how the following statement types can be
combined in programs:

● variable declaration
● constant declaration
● assignment
● iteration
● selection
● subroutine (procedure / function)

Use definite and indefinite iteration, including indefinite iteration with the
condition(s) at the start or the end of the iterative structure. A theoretical
understanding of condition(s) at either end of an iterative structure is required,
regardless of whether they are supported by the language being used.

Use nested selection and nested iteration structures.
Use meaningful identifier names and know why it is important to use

them

www.pmt.education

4.1.1.3 Arithmetic operations
Be familiar with and be able to use:

● addition
● subtraction
● multiplication
● real/float division
● integer division, including remainders
● exponentiation
● rounding
● truncation

4.1.1.4 Relational operations in a programming language

Be familiar with and be able to use:
● equal to
● not equal to
● less than
● greater than
● less than or equal to
● greater than or equal to

4.1.1.5 Boolean operations in a programming language

Be familiar with and be able to use:
● NOT
● AND
● OR
● XOR

4.1.1.6 Constants and variables in a programming language

Be able to explain the differences between a variable and a constant.
Be able to explain the advantages of using named constants.

www.pmt.education

4.1.1.7 String-handling operations in a programming language
Be familiar with and be able to use:

● length
● position
● substring
● concatenation
● character → character code
● character code → character
● string conversion operations

4.1.1.8 Random number generation in a programming language

Be familiar with, and be able to use, random number generation.

4.1.1.9 Exception handling

Be familiar with the concept of exception handling.
Know how to use exception handling in a programming language with

which students are familiar.

4.1.1.10 Subroutines (procedures/functions)

Be familiar with subroutines and their uses.
Know that a subroutine is a named ‘out of line’ block of code that may

be executed (called) by simply writing its name in a program statement.
Be able to explain the advantages of using subroutines in programs.

4.1.1.11 Parameters of subroutines

Be able to describe the use of parameters to pass data within
programs.

Be able to use subroutines with interfaces.

4.1.1.12 Returning a value/values from a subroutine

Be able to use subroutines that return values to the calling routine.

www.pmt.education

4.1.1.13 Local variables in subroutines
Know that subroutines may declare their own variables, called local

variables, and that local variables:
● exist only while the subroutine is executing
● are accessible only within the subroutine

Be able to use local variables and explain why it is good practice to do
so.

4.1.1.14 Global variables in a programming language

Be able to contrast local variables with global variables.

4.1.1.15 Role of stack frames in subroutine calls

Be able to explain how a stack frame is used with subroutine calls to
store:

● return addresses
● parameters
● local variables

4.1.1.16 Recursive techniques

Be familiar with the use of recursive techniques in programming
languages (general and base cases and the mechanism for implementation).

Be able to solve simple problems using recursion.

www.pmt.education

Data Types

● A ​data type​ is defined by:
○ The ​values it can take
○ The​ operations which can be performed on it

● It is sometimes possible to store ​one piece of data ​ using ​different ​data types

Data type Description

Integer A whole number, positive or negative, including zero.

Real / Float A positive or negative number which can have a fractional
part.

Boolean A value which is either true or false.

Character A single number, letter or symbol.

String A collection of characters.

Data / Time A way of storing a point in time, many different formats are
used.

Pointer / Reference A way of storing memory addresses.

Records A collection of fields, each of which could have a different
data type.

Arrays A finite, indexed set of related elements each of which has
the same data type.

User-defined data types

● Derived from ​existing data types
● Ensures that a solution is ​as memory efficient as

possible

www.pmt.education

Programming Concepts

Statement type Description

Variable declaration Creating a variable for the first time, giving it a ​name
and sometimes a ​data type​.

Constant declaration The same as variable declaration, but when creating a
constant​.

Assignment Giving a constant or variable a value.

Iteration Repeating ​an instruction.

Selection Comparing values​ and ​choosing an action ​ based on
those values.

Subroutine A named ​block of code ​ containing a ​set of instructions
designed to perform a ​frequently used​ operation.

Definite and indefinite iteration

● Definite iteration
○ The number of repetitions required is ​known​ before the loop starts

● Indefinite iteration
○ The number of repetitions required is ​not known ​ before the loop starts

Nested Structures

● Selection structures and iteration structures can be ​nested
● One structure is ​placed within another
● This can easily be identified by different levels of ​indentation ​in code
● Indentation makes the code ​easier for humans to understand

Meaningful Identifier Names

● Constants, variables and subroutines should be given ​sensible ​and ​meaningful
identifier names.

● This makes it ​easier for others to understand ​ what the purpose of the named object
is.

www.pmt.education

Arithmetic Operations

Operation Description

Addition Adding together two numbers.

Subtraction Taking one number away from another.

Multiplication Timesing two numbers together.

Real / Float Division Dividing one number by another.

Integer Division The same as real / float division, but just the ​whole number
part​ is given.

Modulo Returns the remainder of an integer division.

Exponentiation Raising one value to the power of another.

Rounding Limiting the​ degree of accuracy​ of a number.

Truncation Removing the decimal part​ of a number. Never round up.

Relational Operations

Operation Example

Equal to 12 = 12

Not equal to 16 <> 413
16 != 413

Less than 75 < 422

Greater than 19 > 18

Less than or equal to 6 >= 22
95 >= 95

Greater than or equal to 20 >= 126
44 >= 44

www.pmt.education

Boolean Operations

Operation Description Example

NOT The ​opposite ​of a Boolean value NOT 1 = 0

AND The ​product ​of two Boolean values 1 AND 1 = 1
0 AND 1 = 0

OR The ​sum ​of two Boolean values 1 OR 0 = 1
1 OR 1 = 1

XOR True if ​strictly one​ of two values is true 1 XOR 1 = 0
1 XOR 0 = 1

Constants and Variables

● Data is usually stored by a program using ​constants ​or ​variables
● Variables can ​change their value ​ during the execution of a program
● A constant’s value ​cannot change ​ once assigned
● Constants can be used for storing data that ​doesn’t need to change
● Using constants allows values to be given ​identifier names
● This makes code ​easier for a human to understand
● Using a constant makes changing a value throughout code ​much easier ​as it only

needs to be updated ​in one place

String-handling operations

Function Description

Length Returns the ​number of characters ​ in a specified string.

Position Returns the ​position of a specified character ​within a string.

Substring Given a starting position and a length, returns a ​portion of a
string​.

Concatenation Joining two or more strings together ​ to form a new, longer
string.

www.pmt.education

String conversions

● Character to character code
● Character code to character
● String to integer
● String to float
● Integer to string
● Float to string
● Date / time to string
● String to date / time

Random number generation

● Most high level programming languages can ​generate random numbers
● A built-in function takes a ​seed value ​ and uses a series of ​mathematical operations

to arrive at a number.
● A computer can never generate a ​truly ​random number
● As such, computer-generated random numbers are said to be ​pseudorandom

Exception handling

● Once an ​exception ​has been ​thrown​, the computer has to ​handle the exception​ to

avoid crashing ​.
● It does this by:

○ Pausing execution ​ of the program
○ Saving the current ​volatile ​state of the program on the ​system stack
○ Running a section of code called a ​catch block

● Once the exception has been handled, the program uses the ​system stack ​to
restore its previous state ​ before ​resuming execution ​.

Subroutines

● A ​named block of code
● Containing a ​set of instructions​ designed to perform a ​frequently used​ operation
● Reduces repetition​ of code
● Makes code ​more compact​ and ​easier to read
● Can be ​called by writing their name​ in a program statement

www.pmt.education

Functions and Procedures

● Both ​functions ​and ​procedures ​are types of subroutine
● Both functions and procedures can return a value
● Functions are ​required to return a value
● Procedures ​may not

Parameters of subroutines

● Parameters are used to ​pass data​ between subroutines
● They are specified ​within brackets​ after a subroutine call
● They hold ​pieces of information ​ that the subroutine requires to run
● The actual value passed by a parameter is called an ​argument

Returning values from a subroutine

● A subroutine ​can ​return a value
● A subroutine that ​always ​returns a value is called a ​function
● Subroutines that return values can

○ Appear in ​expressions
○ Be ​assigned to a variable or parameter

Local variables in subroutines

● A local variable can ​only be accessed from the subroutine within which it is declared
● Local variables only exist in the computer’s memory ​when their parent subroutine is

executing
● Local variables are ​more memory efficient ​ than global variables

Global variables

● Global variables can be​ accessed from any part​ of a program
● They exist in memory for ​the entire duration​ of the program’s execution

www.pmt.education

The role of stack frames in subroutine calls

● Stack frames are used by computers to store:
● Return addresses
● Parameters
● Local variables

● A stack frame is created for each ​subroutine call​ that occurs
● Each ​stack frame ​will be ​pushed ​onto the computer’s ​call stack
● When a subroutine finishes executing, its stack frame is ​popped ​from the call stack
● The computer uses information from the stack frame to ​return to execution​ of the

previous subroutine

Recursive techniques

● A recursive subroutine is ​defined in terms of itself
● Any recursive subroutine must meet have a ​stopping condition​ (called a ​base case ​)

which ​doesn’t use recursion​ to return a result
● The base case ​must be met​ at some point
● A recursive algorithm that ​doesn’t meet its base case ​will cause a ​stack overflow
● When a problem can be solved recursively, it can often ​also be solved using

iteration
● Iterative solutions are often ​easier to program ​ than recursive solutions
● Recursive solutions can be ​more compact​ in code than iterative solutions

www.pmt.education

